

Timester Challenge **Quadratic Sequences**

Here are the first four terms of a quadratic sequence

20

Work out the next term of the sequence.

Silver A quadratic sequence has an nth term of

The nth term of a quadratic sequence is

 $n^2 + 2n - 4$

Work out the first three terms of this sequence.

 $2n^2 - 3n + 5$

Calculate the 7th Term of the sequence.

Bronze *

Complete the quadratic sequence by calculating the missing terms.

3.

Silver

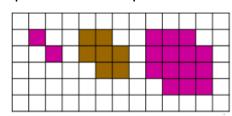
A sequence has an nth term of

$$n^2 - 5n + 4$$
.

Work out with term in the sequence has a value of 54.

Here are the first 4 terms of a quadratic sequence.

13.


27.

45

Find an expression, in terms of n, for the nth term of this quadratic sequence.

Gold 7

Here is a pattern made up of tiles.

- How many tiles will be needed in the 4th Pattern?
- Find in terms of n, an expression for the nth term of this pattern. Gold

Timester Challenge **Quadratic Sequences Answers**

Here are the first four terms of a quadratic sequence

Work out the next term of the sequence.

$$5^{th}$$
 Term: $20 + 12 = 32$

Bronze 🖈

Complete the quadratic sequence by calculating the missing terms.

The nth term of a quadratic sequence is

$$n^2 + 2n - 4$$

Work out the first three terms of this sequence.

A quadratic sequence has an nth term of

$$2n^2 - 3n + 5$$

Calculate the 7th Term of the sequence.

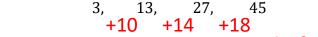
7th Term:
$$2(7)^2 - 3(7) + 5$$

= $2(49) - 21 + 5$
= $98 - 16$
= 82

A sequence has an nth term of

$$n^2 - 5n + 4$$
.

Work out with term in the sequence has a value Therefore 54 is the 10th


$$n^2 - 5n - 50 = 0$$
$$(n - 10)(n + 5) = 0$$

of 54. $n^2 - 5n + 4 = 54$

Silver

term of the sequence.

Solutions when n = 10 and n = -5

Here are the first 4 terms of a quadratic sequence.

$$+10 +14 +18$$

 $+4 +4 4 \div 2 = 2n^2$

$$n^2$$
, n^2 , n^3 , n^3 . Therefore the nth term rule is

$$2n^2 + 4n - 3$$

Here is a pattern made up of tiles.

- How many tiles will be needed in the 4th Pattern? Pattern 4: 14 + 9 = 23 tiles
- Find in terms of n, an expression for the nth term of this pattern.

$$n^2 - 2$$

